
International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

127

DevOps Best Practices:

Automating Deployment for Faster Delivery

Santosh Panendra Bandaru

Independent Researcher, USA

ABSTRACT

The rise of DevOps has revolutionized software development and delivery, emphasizing collaboration, speed,

and reliability. Deployment automation, a cornerstone of DevOps, enables faster, more efficient software

delivery while reducing manual errors and ensuring consistent deployments. This paper explores the evolution

of DevOps and deployment automation, highlights foundational practices like Continuous Integration (CI) and

Infrastructure as Code (IaC), and provides insights into key automation tools and frameworks. Additionally, it

examines CI/CD pipeline architecture, automated testing, monitoring, and future trends such as AI-driven

automation. The research concludes with actionable recommendations to enhance deployment automation for

DevOps practitioners.

Keywords: DevOps, Continuous Integration, Continuous Deployment, CI/CD Pipeline, Automation,

Infrastructure as Code, Deployment Automation, DevSecOps

INTRODUCTION

1.1 Overview of DevOps

DevOps is a collaboration model that unites development and operations for faster software release speed and quality.

DevOps focuses on automation, continuous feedback, and iteration throughout the software life cycle (Ajiga et al.,

2024). DevOps facilitates faster, more stable releases by creating shared responsibilities and removing silos. The

practice utilizes methods such as Continuous Integration (CI), Continuous Delivery (CD), and Infrastructure as Code

(IaC), all of which are core to modern software release practices.

1.2 Importance of Automation in DevOps

DevOps automation lessens the labor involved manually in recurring work such as code integration, testing, and

deployment. Automated pipelines are consistent, lessen the amount of time involved to deploy, and minimize errors.

Automation likewise increases scalability to an extent where teams can cope with multiple releases and environments

(Barakabitze et al., 2019). Organizations through automated deployment are able to spend more time in innovation and

deliver fast without compromising on quality.

1.3 Objectives and Scope of the Research

This paper aims to:

 Explore the evolution of deployment automation in DevOps.

 Analyze foundational DevOps principles such as CI, CD, and IaC.

 Evaluate leading DevOps automation tools and their selection criteria.

 Provide insights into building robust CI/CD pipelines.

 Discuss the future of deployment automation, including AI and NoOps.

The Evolution Of DevOps And Deployment Automation

2.1Historical Context of SoftwareDeployment

Software deployment was mostly manual with long release cycles and prone-to-error steps in its early days through the

Waterfall methodology. Operations teams and developers would often suffer from miscommunication, leading to

inconsistencies and delays during deployment (Casale et al., 2016).

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

128

When Agile development appeared in the 2000s, there was greater collaboration and increased iteration speed but

manual deployment procedures. With increasing complexity of systems and release requirements, automation was the

only option, which led to the advent of DevOps.

Table 1: Historical Adoption Rates of DevOps Practices

Year
Percentage of Organizations

Adopting DevOps
Notable Milestones/Trends

2010 10% Early adopters implement CI/CD

2014 25% DevOps recognized in large enterprises

2018 50% Cloud adoption drives DevOps growth

2022 70% Widespread use of containerization

2025 85% (projected) AI-driven automation on the rise

2.2 The Emergence of Continuous Integration and Continuous Deployment (CI/CD)

Continuous Integration (CI) and Continuous Deployment (CD) transformed software deployment by mechanizing code

integration, testing, and release. It was caught early using tools such as Jenkins that made CI famous. CD then took it to

another level by auto-deploying tested code to production. CI/CD together made software releases quicker, more

stable(Di Francesco, Lago, & Malavolta, 2019). Trendsetters such as Amazon and Google established new norms for

deployment speed, and the practices entered mainstream across the industry.

2.3 Current Trends and Industry Standards

The current trends in DevOps automation include DevSecOps, where security testing is incorporated into CI/CD

pipelines, and Infrastructure as Code (IaC), where infrastructure is provisioned through code with tools such as

Terraform (Holmlund et al., 2020). Cloud-native technology, including containers and Kubernetes, has transformed

scalability and consistency in deployment. New AI tools scan for deployment metrics to improve automation and

forecast failures. Industry metrics of DORA—deployment frequency and change failure rate—now characterize high-

performing DevOps teams.

Foundational Principles Of Deployment Automation In DevOps

3.1 Continuous Integration (CI) Practices

Continuous Integration (CI) refers to the process of writing developers putting the code together in a single shared

repository, usually several times a day. Every integration is checked by an automated build and testing procedure to

identify errors early on (Hüttermann, 2012). The overall aim of CI is to trap and correct errors early during

development, which reduces the cost of defects and speeds up delivery of software.

Modern CI processes focus on automating every process, from build to code through unit tests and static code checks.

Jenkins, GitLab CI, and Travis CI are three of the famous tools that get used to automate CI pipelines, which include

distributed test, parallel build, and version control. Organizations' CI adoption leverage "shift-left" testing where it is

performed earlier in the cycle of development for catching defects at an early time.

Having a stable and reliable build pipeline is likely the most critical issue in CI adoption. Among CI best practices is

making sure that all tests are automated, capping the amount of change being integrated at any given time, and

employing code review processes for code quality.

Teams must also invest in build servers with enough capacity to run multiple builds at once without causing delays

(Jamshidi et al., 2018). By following such practices, the teams receive quicker feedback along with improved code

quality that eventually results in more stable overall software releases.

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

129

Figure 1CI/CD Adoption Across Industries (Jamshidi et al., 2018)

3.2 Continuous Delivery (CD) vs. Continuous Deployment

Continuous Delivery and Continuous Deployment are two related practices that extend CI. Continuous Delivery

automates the entire software release process but has a human approval step prior to deployment to production. This

human gate enables teams to inspect changes, run further testing, or check compliance with regulations prior to release.

Continuous Deployment goes one step further by deploying each successful code change automatically to production

without human involvement.

The major benefit of Continuous Delivery is that it is flexible yet extremely automated. Organizations can roll out

releases on demand and have production environments steady and secure. Continuous Deployment, which is stronger,

allows organizations to have almost real-time time-to-market for new features and bug fixes (Kreuzberger, Kühl, &

Hirschl, 2023). Netflix and Facebook are two companies that have used Continuous Deployment, rolling out code

changes several times a day to millions of consumers.

In order to successfully implement either of these practices, teams need to provide special attention to strong automated

testing, monitoring, and rollback capabilities. Automated testing needs to cover a broad range of scenarios such as

functional, integration, performance, and security tests. Canary deployments and blue-green deployments are also

typically employed to reduce risks in production. These practices allow new releases to be tested in production without

affecting all users.

3.3 Infrastructure as Code (IaC) Concepts

Infrastructure as Code (IaC) is a core DevOps practice where infrastructure is provisioned and controlled by code

instead of manual configuration. IaC allows teams to describe infrastructure configurations in version-controlled files

that can be applied automatically to provision or update environments (Laghrissi& Taleb, 2018). This process maintains

consistency between environments and minimizes the risk of configuration drift.

IaC can be categorized into declarative and imperative models. Declarative IaC, utilized by Terraform and AWS

CloudFormation, is based on specifying the desired state of infrastructure so that the tool determines the steps to bring

it into being. Imperative IaC, utilized by Ansible and Chef, specifies the steps in detail to create infrastructure. Both

models have advantages, and organizations like to use a mix of both depending on their requirements.

One of the key advantages of IaC is that it can facilitate repeatable and scalable deployments. For instance, IaC enables

teams to provision identical development, testing, and production environments such that code operates consistently

across environments (Macarthy & Bass, 2020). IaC also supports automated disaster recovery since environments can

be recreated from scratch within minutes.

But implementing IaC also comes with challenges like infrastructure complexity and security management. Some of

the best practices to implement IaC are using modular code for reuse, applying code reviews to avoid

misconfigurations, and using role-based access control (RBAC) to lock down infrastructure code. Organizations must

invest in IaC linting and validation tools that can detect configuration errors before running on live environments.

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

130

Table 2 Provides a comparison of popular IaC tools, highlighting their key features and usecases:

Tool Model Key Features Use Cases

Terraform Declarative
Cloud-agnostic,

state management

Multi-cloud

provisioning

AWS CloudFormation Declarative
Deep integration

with AWS services

AWS environment

provisioning

Ansible Imperative

Agentless, supports

configuration

management

Server configuration,

application setup

Chef Imperative

Supports complex

workflows,

community recipes

Configuration

automation, CI/CD

pipelines

Key DevOps Automation Tools And Frameworks

4.1 Overview of Popular Automation Tools

Automation software is the answer to executing DevOps practice so that teams can create, test, deploy, and update

software reliably and repeatably. There are numerous tools which have become popular as industry standards because

they can be extended, are flexible, and simple to integrate (Mendling, Pentland, & Recker, 2020). Jenkins is one of the

most popular Continuous Integration (CI) servers with an extensible plugin structure for executing different phases of

the software development cycle. GitLab CI/CD, which is part of GitLab, enables end-to-end automation from source

code management through deployment into production.

Ansible, a tool used for configuration management, does the server configuration and application deployment with

agentless design. HashiCorp developed Terraform, a tool that belongs to Infrastructure as Code (IaC), and is used for

declarative provisioning and managing cloud infrastructure more famously. The container orchestration system in

leadership, Kubernetes, automates application deployment, scaling, and managing applications on distributed

environments with containerization. All of these tools are important in helping to automate different parts of the

DevOps pipeline so that teams can deploy more quickly and reliably.

Figure 2 DevOps Adoption Over Time (Mendling, Pentland, & Recker, 2020)

4.2 Tool Selection Criteria

The selection of most suitable DevOps automation tools depends on various factors such as organizational

requirements, team competence, and integration. Scalability is an important aspect, particularly for large organizations

that deal with complicated applications in multiple environments(Mishra &Otaiwi, 2020). Tools must be able to offer

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

131

horizontal scaling and be able to handle large datasets efficiently without affecting performance. Ease of use and

community support are also significant, since software with easy-to-use interfaces and active communities will tend to

have lower learning curves and issues resolved more quickly.

Compatibility with current infrastructure and cloud providers is another consideration. Multi-cloud organizations must

focus on cloud-agnostic or natively supported tools for leading cloud providers such as AWS, Azure, and Google

Cloud. Security is also highly critical; tools must be able to support role-based access control (RBAC), secure secrets

management, and automated vulnerability scanning. Organizations should also take into account the total cost of

ownership (TCO), whether it is implementation and maintenance resources or licensing fees. With this consideration,

teams can choose tools that best suit their operation objectives and overall strategy.

Table 3 compares some of the leading DevOps automation tools based on key features,

strengths, and limitations:

Tool Primary Use Case Key Features Strengths Limitations

Jenkins
Continuous

Integration

Extensive plugin

ecosystem,

pipeline as code

Highly extensible,

open-source

Complex setup and

maintenance

GitLab CI/CD CI/CD

Integrated with

GitLab, end-to-

end automation

Unified platform,

easy to configure

Limited plugin

ecosystem

Ansible
Configuration

Management

Agentless,

YAML-based

playbooks

Simple syntax, large

community

Performance issues

with large-scale

ops

Terraform
Infrastructure as

Code

Declarative,

multi-cloud

support

Cloud-agnostic, state

management

Requires state file

management

Kubernetes
Container

Orchestration

Auto-scaling,

service discovery

Industry standard,

extensible

Steep learning

curve

These tools collectively form the foundation of modern DevOps automation. Teams often use multiple tools in tandem

to create comprehensive CI/CD pipelines, automate infrastructure provisioning, and orchestrate complex deployments.

By leveraging the strengths of each tool, organizations can build robust, scalable, and secure DevOps ecosystems.

BUILDING A ROBUST CI/CD PIPELINE

5.1 Pipeline Design and Architecture

An efficient Continuous Integration and Continuous Deployment (CI/CD) pipeline is responsible for successful,

automated software deployment. The pipeline design must be modular so that each step—build, test, deploy, and

monitoring—can be run and controlled independently (Mohan & Othmane, 2016). This modularity provides flexibility

in that teams can add or change steps with ease without affecting the overall pipeline.

The pipeline generally starts with source code integration, in which modifications are retrieved automatically from a

version control system (e.g., Git). A build process comes next, which compiles the code and generates artifacts. The test

phase consists of unit, integration, and acceptance tests to verify code quality and functionality. Successful builds are

promoted to deployment stages, which can include staging and production environments. Automated approval gates can

also be set to allow manual checking for high-risk changes or for regulatory compliance.

Software such as Jenkins and GitLab CI/CD enables teams to specify pipelines as code, which are versionable and

traceable (Munappy et al., 2020). Pipeline templates and shared libraries can also be utilized to enforce processes

across multiple teams such that duplication is avoided and consistency is promoted.

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

132

Figure 3CI/CD Pipeline Workflow Diagram(servian,2019)

5.2 Pipeline Orchestration and Staging Environments

Pipeline orchestration is the management of the task execution at several stages to be delivered efficiently and

smoothly. Sophisticated orchestration tools exist that allow for parallel builds, with several tasks executed in parallel.

Parallelization maximizes overall pipeline run time as well as offers quicker feedback cycles. Triggers and conditional

statements can be used to manage the dependencies among the tasks such that downstream tasks execute only after

successful execution of the upstream tasks.

Staging environments are very crucial in deployment pipelines since they provide realistic stages upon which the pre-

production environment can be well tested. Such staging environments should closely simulate the production

environment to a high degree, in every aspect of configuration, data, and network topology (Opara-Martins, Sahandi, &

Tian, 2016). Blue-green deployment and canary releases are common patterns utilized in the practice of staging

environments to minimize production failure risk. Blue-green deployments involve the upkeep of two alike

environments, diverting traffic between two during updates. Canary releases gradually roll out changes to a subset of

users before fully rolling out at scale, allowing teams to detect and fix issues early.

5.3 Integrating Security (DevSecOps)

Security integration, or DevSecOps, is crucial for the well-being of a CI/CD pipeline. Security practices that are manual

dependent on end-of-cycle testing and sporadic audits are insufficient for the era of DevOps, where quick speed is

essential. DevSecOps moves security left by bringing automated security scanning into the pipeline. SAST tools scan

source code for flaws at build time, while DAST tools imitate attacks against staging apps executing live.

Secrets management is also a significant DevSecOps topic. Tools like HashiCorp Vault and AWS Secrets Manager are

some of the utilities used to securely store and manage sensitive data like API keys and database credentials. Role-

based access control (RBAC) and least-privilege policies also bolster pipeline security by restricting access to valued

resources.

Along with automated scanning and access controls, there also needs to be continuous monitoring and incident

response plans available in order to detect and incapacitate the potential threats (Pahl, Jamshidi, & Zimmermann,

2018). Having security at all levels of the pipeline minimizes organizations' exposure to risk and meets the industry's

demand for regulation.

AUTOMATED TESTING IN DEPLOYMENT PIPELINES

6.1 Types of Tests for Automated Pipelines

Automated testing is the central element in contemporary DevOps pipelines, which checks code change at every level

of the application delivery pipeline. Different test kinds are used for testing different characteristics of the app lifecycle.

The unit tests constitute the backbone where individual functions or components are being tested to be sure they

respond as intended isolated. Such testing is generally swift and runs early in the pipe. Integration tests verify that

interactions between different components or services and how well they co-operate. Acceptance tests, usually

automated with behavior-driven development (BDD) tools like Cucumber, ensure the application satisfies business

acceptance criteria. Performance and load tests verify how the application handles different levels of traffic and stress

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

133

to allow teams to identify bottlenecks before they are released to production (Sebastian et al., 2020). Security tests,

such as static analysis and penetration testing, identify vulnerabilities in code and infrastructure. Smoke tests are run

post-deployment to rapidly ensure basic functionality is working. Through running all of these categories of tests,

teams can gain assurance of the quality and stability of their deployments.

6.2 Test Automation Frameworks and Tools

Test automation frameworks assist in making it easier to develop, run, and report on test cases. Selenium is a widely

used open-source browser-based application automation framework. Its flexibility and support for many languages

establish it as a de facto standard for testing UI. For mobile app testing, cross-platform testing is provided by Appium,

allowing teams to automate iOS and Android applications. JUnit and TestNG are commonly used to perform unit

testing in Java applications, with PyTest and NUnit performing the same functions inside Python and.NET,

respectively.

BDD tools like Cucumber and SpecFlow enable teams to write test cases in plain language, making it easy to

collaborate among business stakeholders, developers, and testers. Tools like TestCafe and Cypress give real-time

feedback by integrating with CI/CD pipelines. Tools like Testcontainers can be employed to start independent test

environments to carry out repeatable and consistent testing (Sultan, Ahmad, & Dimitriou, 2019). Test automation

framework choice must be guided by the application architecture and by skill in the team to provide high efficacy and

efficiency.

Figure 4 CI/CD Pipeline with Automated Testing Diagram(browserstack,2020)

6.3 Managing and Monitoring Test Failures

Good handling of test failures is crucial for pipeline stability and rapid problem fixing. On the occurrence of a test

failure, automated alerts must be triggered to stakeholders using tools such as Slack or Microsoft Teams.

Comprehensive test reports with failure logs and screenshots must be created to enable root cause analysis. Test trend

analysis is provided by most CI/CD tools, which enables teams to detect repeated failures and prioritize them for fixing.

Flaky tests can break trust in automated pipelines. Such tests must be recognized, isolated, and either repaired or

removed. Test retries might be implemented for known transient faults, but not too many should be attempted in order

to avoid hiding underlying issues. Having rollback mechanisms in place automatically prevents failed builds from

reaching production. Furthermore, test monitoring dashboards provide teams insight into failure rates, test coverage,

and test execution times and allow them to continuously optimize their testing strategy (Taibi, Lenarduzzi, & Pahl,

2018). By setting solid failure management practices, organizations are able to ensure maximum overall reliability and

resilience for their deployment pipelines.

INFRASTRUCTURE AS CODE (IAC) FOR DEPLOYMENT AUTOMATION

7.1 Benefits and Challenges of IAC

Infrastructure as Code (IaC) changed the way infrastructure is provisioned and managed by allowing teams to declare

and version infrastructure with code. Consistency is perhaps one of the most significant advantages of IaC. Using

declarative templates, teams are able to ensure environments are consistently and repeatedly provisioned, with no fear

of configuration drift. This consistency also facilitates development and operations team coordination, as infrastructure

definitions can be versioned and reviewed along with application code. A further benefit is provisioning speed. IaC

simplifies the task of provisioningservers, networks, databases, and so on, which makes it significantly lower the time

taken to spin up new environments. This speed can be very useful when scaling apps and continuous deployment. IaC

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

134

also aids in disaster recovery since teams can quickly create environments from code if something goes wrong. IaC is

not without its challenges, though. It is hard to manage complex dependencies and achieve security in code-based

infrastructure. Also, state files that worked in an incorrect way could lead to unwanted change and downtime (Zhang et

al., 2021). All such issues are avoided with organizations following best practices, such as peer review, auto-validation,

and cautious handling of state.

7.2 Popular IaC Tools (e.g., Terraform, Ansible)

A number of IaC tools are now de facto standards, each with their own personality and use cases. HashiCorp's

Terraform is one of the most widely used declarative provisioners for infrastructure. Terraform's cloud-agnostic design

lets teams define infrastructure for multiple cloud providers in a single configuration language. Terraform's state

management feature keeps track of resources' current states and supports incremental updates, which ensures that

infrastructure updates are applied consistently.

Ansible, as an open-source automation solution, is extensively used for IaC and configuration management. Agentless

in nature, it automates server and application management without any additional software installation. Playbooks

written in YAML syntax are human-readable and also allow team collaboration. CloudFormation, AWS's own IaC tool,

is highly integrated with AWS services and offers rich feature sets to integrate with advanced cloud environments.

Some of the other top tools are Pulumi, where teams can declare infrastructure in general-purpose programming

languages, and Chef, which integrates configuration management with infrastructure automaton (Ajiga et al., 2024).

The appropriate tool to use depends on the cloud strategy of the organization, team abilities, and automaton needs.

7.3 Best Practices for IaC Implementation

To achieve the full potential of IaC, teams must follow best practices that ensure stability, security, and scalability.

Version control is perhaps the most important practice. All IaC scripts and templates must have versions stored in

control systems such as Git so that the teams can track changes, roll back to previous states, and conduct code reviews.

Parameterization and modularization must also be done for reusability and maintainability. By developing reusable

modules and parameterizing in order to tailor configurations, teams are able to prevent duplication and make updates.

Automation and linting software can be used to identify syntax errors, policy breach, and security flaws prior to

deployment. Terraform Validator and Checkov are a couple of popular tools which can be used to enforce the

organizational policies as well as comply with industry standards (Barakabitze et al., 2019). State management is

important in software like Terraform, where the state files have to be safely stored in remote backends using encryption

and also access controls. State locking and automatic backup can be used to improve it.

Finally, drift detection and ongoing monitoring must be enabled to maintain infrastructure in the desired state. AWS

Config and Azure Policy are just a couple of tools used to automatically detect configuration drift and remediate it,

reducing manual effort and providing consistency across environments. If these best practices are implemented, teams

can develop stable IaC deployments that guarantee operational efficiency as well as support continuous delivery.

VERSION CONTROL AND ARTIFACT MANAGEMENT IN DEPLOYMENT

8.1 Role of Version Control in Automated Deployments

Version control is also central to automated deployment because it allows teams to record, store, and reverse changes to

application code and infrastructure configurations. Software such as Git saves snapshots of all the changes in code

during DevOps to ensure traceability and transparency (Casale et al., 2016). Their safety net of rollbacks to prior

versions in the case of troubles reduces risks stemming from continuous and rapid deployment.

Version control also facilitates collaboration between developers in the sense that it allows developers to work in

parallel on branches, which can be merged into the master branch once thoroughly inspected. Continuous integration

(CI) pipelines are usually initiated by version-controlled repository changes to ensure builds are approved and tested

before proceeding further down the deployment pipeline. Feature flags can be utilized together with version control to

enable selective feature deployment, and canary releases and A/B testing can be conducted. Version control can be

utilized by organizations to minimize their software delivery process, improve collaboration, and make their systems

stable through automated deployment.

8.2 Artifact Repositories and Management Strategies

Artifact repositories are the central place of managing build process output such as executables, libraries, container

images, and other deployable artifacts. Artifact repositories are versioned, kept up-to-date, and replicated across

environments to support continuous delivery and deployment. Artifact repository tools such as JFrog Artifactory, Nexus

Repository, and AWS CodeArtifact are also in use (Di Francesco, Lago, & Malavolta, 2019). Integration support into

CI/CD pipelines and automated pulling and deployment of artifacts at each stage of the pipeline can be furthered.

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

135

Artifact management can be optimized by the development of retention policies to prevent usage of storage space over

but making the most essential versions available. Immutable artifact policies can be developed such that once artifacts

are published, they cannot be modified, which ensures consistency in the deployments. Dependency management is

also a highly critical area since artifacts will be depending on third-party libraries or modules. Tools like Maven and

npm help in resolving and managing dependencies to prevent build collapse because of the lack or compatibility of

components. With improved best practices in handling artifacts, the team can enhance deployment and ensure proper

access to the build output.

8.3 Ensuring Traceability and Rollbacks

Traceability offers a choice of monitoring where the changes began in the pipeline for software deployment, code

commit to placing it into production. Full traceability offers that every artifact, deployment, and configuration can be

traced back to their corresponding code changes and tests (Holmlund et al., 2020). Git's tagged commits and tags are

typically employed for tagging off the different versions or releases so that they can be traced whenever placed into

deployment.

Build metadata, such as the build number and the commit hash, must be injected into artifacts in order for them to trace

effectively. Traceability reports that automate and correlate code changes, build results, and deployment activity within

a single view are exactly what most CI/CD solutions provide. Rollback processes are similarly critical in preventing

downtime in the case of failed deployment. Blue-green release and canary releases allow teams to roll back to a

familiar environment in seconds without impacting end users. Through the help of robust rollback and traceability

facilities, organizations are able to ensure enhanced deployment reliability and prevent production change risks.

MONITORING AND OBSERVABILITY IN AUTOMATED DEPLOYMENTS

9.1 Defining Metrics for Deployment Success

Measuring and defining deployment success metrics are critical in determining the reliability and effectiveness of

automated deployment. Standard deployment metrics include deployment frequency, change lead time, and mean time

to recovery (MTTR). Deployment frequency is one measure of how often new features or updates are released to

production, determining how fast the team is able to deliver value (Hüttermann, 2012). Lead time for change is the

code commit to deployment duration, reflecting pipeline bottlenecks.

MTTR is the time to recover from failure and a metric for how fast the team reacts to an incident. Change failure rate is

another significant metric that indicates the percentage of deployments that fail or result in rollback. When these are

monitored together, they provide a holistic picture of the deployment performance and enable continuous improvement

processes to be set in place. Teams must establish thresholds and notifications on the key metrics so that outliers are

detected early and corrective measures are initiated in advance.

Table 4: Success Metrics for CI/CD Pipeline Performance

Metric Name Definition
Industry Benchmark/Target

Value

Deployment

Frequency

How often

deployments are

pushed to production

Multiple times per day

Lead Time for

Changes

Time taken from

code commit to

production

Less than 1 day

Change Failure Rate

Percentage of

deployments causing

failures

Less than 15%

Mean Time to

Recovery (MTTR)

Time taken to recover

from failures
Less than 1 hour

Test Coverage

Percentage of code

covered by

automated tests

80% or higher

9.2 Real-time Monitoring and Alerting

Real-time monitoring is crucial for the health and stability of automated deployments. Monitoring tools such as

Prometheus, Grafana, and Datadog gather and render data from application logs, metrics, and traces in real time. The

tools offer dashboards that present an at-a-glance view of system performance and deployment health (Jamshidi et al.,

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

136

2018). Real-time alarms can be programmed to send out notification when established thresholds are violated, such as

unusually high error rates, heightened latency, or deployment failure.

Cloud resource health is monitored using infrastructure monitoring tools such as AWS CloudWatch and Azure Monitor,

while environments are scaled automatically depending on demand. Log aggregation tools such as ELK Stack

(Elasticsearch, Logstash, and Kibana) index and persist log data to enable rapid search and correlation of events. Alerts

need to be directed to incident management tools such as PagerDuty or Opsgenie to initiate rapid response. By

embracing real-time monitoring and alerting behaviors, teams can enhance deployment observability and decrease time

to detect and resolve problems.

Figure 5 CI/CD Pipeline Performance Metrics(Hüttermann, 2012)

9.3 Continuous Feedback Loops

Continuous feedback cycles are an essential aspect of DevOps, allowing teams to learn from every deployment and

continue to get better and better. Feedback is collected from multiple sources such as monitoring metrics, user

complaint reports, and post-deployment reviews (Kreuzberger, Kühl, & Hirschl, 2023). Application Performance

Monitoring (APM) tooling such as New Relic and Dynatrace give deep insights into application behavior and user

experience, allowing teams to identify performance bottlenecks and optimize system performance.

Error tracking features like Sentry and Rollbar collect and consolidate application errors and return context-rich details

to developers in order to debug and conduct root cause analysis. Feedback loops should be baked in CI/CD pipelines so

deployments are tested inside real-world situations and end-users' expectations. Periodic inspection of feedback

information and blameless post-mortem can lead to identifying areas to improve and culture based on learning- and

collaboration. By creating persistent feedback loops, organizations can drive improvement in deployment practices,

software quality, and customer value delivered.

ADDRESSING CHALLENGES IN DEPLOYMENT AUTOMATION

10.1 Common Pitfalls and Risks

Automation deployment, although useful, is not without risk. One of the more prevalent risks is inadequate test

coverage, which causes bugs to slip through the pipeline unnoticed. All code paths, configurations, and infrastructure

that are essential must be touched by automated tests in order to reduce risk from deployment. Configuration drift is

another risk, whereby production environments' actual state is not the desired configuration defined in the pipeline

(Laghrissi& Taleb, 2018). Configuration drift introduces intermittent and unpredictable behavior on deployments.

Security risks are also a major challenge, especially if sensitive credentials or environment variables are not securely

kept in automated scripts. Poor rollback design can amplify downtime when it goes wrong. Misaligned business,

operations, and development expectations can also introduce friction that reduces the efficiency of deployments. All

these risks are avoided by good testing discipline, clear communications, and strict security emphasis at all stages in the

pipeline.

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

137

10.2 Scaling Automation Across Teams

Scaling automation of deployment to numerous teams brings its own challenges. Teams might be at different levels of

DevOps maturity, resulting in pipelines of differing design and implementation. Standardization of practices and tools

is required in order to promote consistency and reduce duplication of effort (Macarthy & Bass, 2020). Common

libraries, templates, and best practice documentation must be developed by organizations to assist teams in creating

good, scalable pipelines.

A microservices architecture also facilitates scaling automation since small, independent services that can be deployed

independently enable teams to make changes without impacting other parts. It does impose the requirement of

versioning and dependencies being coordinated well. There can be some possibility of having governance frameworks

centralized to oversee following organizational guidelines with autonomy given to teams to be creative. For automating

scaling successfully, investment in training, cross-team collaboration, and ongoing improvement by all the teams is

necessary.

10.3 Compliance and Regulatory Considerations

Industry regulation and compliance with internal security policy are paramount in deployment automation. Most

industries, including finance and healthcare, have strict regulatory environments that require data protection, audit

trails, and secure change management procedures (Mendling, Pentland, & Recker, 2020). Deployment pipelines must

be built to impose access controls, encrypt sensitive information, and audit all changes.

Automated deployment pipelines must be integrated with security tools that will scan for policy violations,

misconfigurations, and vulnerabilities prior to being deployed into production. Snyk and Black Duck are a few of the

tools available to check for open-source license compliance problems and security issues in dependencies. Regular

audits and penetration testing must be performed by organizations in order to ensure that their pipelines keep pace with

changing regulatory demands. By integrating compliance and security procedures into the automation lifecycle,

organizations can decrease the risk of non-compliance but still have agility.

Future of Deployment Automation in DevOps

11.1 Emerging Technologies and Trends

The future is dictated by innovation in edge computing, containerization, and cloud computing for automation

deployment. Serverless architecture also picks up momentum to support function as a service (FaaS) deployment

without infrastructure under management. Kubernetes, the market-leading container orchestration technology,

continues its evolution through automated deployment-enabling capabilities in hybrid and multi-cloud deployments

(Mishra &Otaiwi, 2020).

GitOps, which utilizes version control as a single source of truth for both application and infrastructure deployments, is

another growing trend. Any update is deployed in the environment whenever changes are pushed to the Git repository

in GitOps, such that deployments can be auditable and reproducible. Technologies like Istio and Linkerd as service

meshes also are gaining usage to control communications among microservices and deployment models like canary

releases.

11.2 Artificial Intelligence and Machine Learning in Automation

Artificial intelligence (AI) and machine learning (ML) are revolutionizing deployment automation with predictive

analytics and anomaly detection. AI tools can learn from past deployment history to identify trends and anticipate

future failures in advance (Mohan & Othmane, 2016). These can be utilized to optimize pipeline performance and

suggest optimization in deployment strategies.

ML algorithms may be used to optimize resource use, scaling, and load distribution from real-world traffic patterns in

real time. ChatOps, which combines chat interfaces with deployment tools, enables AI-powered virtual assistants to

trigger deployments, issue status notifications, and react to operational activity in real time. With capabilities of AI and

ML developing, these will increasingly step up to handle the least human intervention and make automated deployment

more reliable.

11.3 Evolution of NoOps and Fully Automated Deployments

NoOps—where tasks are completely automated—takes deployment automation to the next level. NoOps seeks to do

away with human intervention in daily operations through automated, AI, and self-healing infrastructure (Munappy et

al., 2020). In NoOps, code updates are automatically verified, tested, and deployed into production without human

intervention. Automated deployments also include continuous feedback loops that roll back changes automatically or

scale resources based on performance anomalies. Cloud providers are investing heavily in NoOps-capable managed

services, providing pre-configured deployment pipelines and automated monitoring out of the box (Opara-Martins,

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

138

Sahandi, & Tian, 2016). NoOps is not possible for every organization, but it indicates the continued maturation of

DevOps automation towards more autonomy, agility, and resilience.

CONCLUSION

12.1 Summary of Findings

This research emphasizes the criticality of deployment automation in accelerating software release in DevOps practices.

Deployment automation has developed from hand-to-grown CI/CD pipelines through continuous integration,

continuous delivery, and continuous deployment. The supporting theories of infrastructure as code (IaC), versioning,

and automated testing are the cornerstones of achieving consistency, reliability, and security in deployment pipelines.

Main tools and platforms like Jenkins, GitLab CI/CD, Terraform, and Kubernetes provide the building blocks to

automate deploys across environments. Continuous feedback loops, monitoring, and observability enable teams to

catch and fix errors early and hence ensure overall deployment stability is enhanced. Shunning the typical pitfalls,

automating for more than one team, and compliance are the key to maximizing the use of deployment automation.

12.2 Recommendations for Practitioners

Practitioners require full test coverage and reliable rollback support in order to deal with related risk problems of

automated deployment. Standardization of pipeline design and best-practice cooperation can guarantee automating at

scale for big organizations. Security must be integrated in every phase of the pipeline using practices such as

DevSecOps and vulnerability scanning.

Investment in monitor and observability tooling will be required for real-time observability and pro-active incident

resolution. The teams also must deliberate on newer technology such as GitOps, serverless deployment, and AI-

automated workloads to upkeep an adaptive DevOps environment. Cross-team engagement and continuous learning

between operations, development, and security teams form the foundation for successful deployment automation.

12.3 Final Reflections on the Future of DevOps Automation

The future of deployment automation relies on the intersection of NoOps patterns, cloud-native technology, and

artificial intelligence. The more intelligent and self-servicing the software becomes through automation, the better it

allows organizations to deploy software efficiently, reliably, and with less human intervention. Self-deploying

deployments would be possible only if experimentation, process simplification, and cultural transformation are

complemented with continuous innovation. Through the adoption of the newest innovation and a culture of

collaboration, organizations can realize the full potential of DevOps and unleash more business value by automating

deployment.

REFERENCES

[1]. Ajiga, N. D., Okeleke, N. P. A., Folorunsho, N. S. O., &Ezeigweneme, N. C. (2024). Methodologies for

developing scalable software frameworks that support growing business needs. International Journal of

Management & Entrepreneurship Research, 6(8), 2661–2683. https://doi.org/10.51594/ijmer.v6i8.1413

[2]. Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2019). 5G network slicing using SDN and NFV: A

survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984.

https://doi.org/10.1016/j.comnet.2019.106984

[3]. Chintala, Sathishkumar. ―Analytical Exploration of Transforming Data Engineering through Generative AI‖.

International Journal of Engineering Fields, ISSN: 3078-4425, vol. 2, no. 4, Dec. 2024, pp. 1-11,

https://journalofengineering.org/index.php/ijef/article/view/21.

[4]. Govindaiah Simuni ―Mitigating Bias in Data Governance Models: Ethical Considerations for Enterprise

Adoption‖ International Journal of Research Radicals in Multidisciplinary Fields (IJRRMF), ISSN: 2960-043X,

Volume 1, Issue 1, January-June, 2022, Available online at:

https://www.researchradicals.com/index.php/rr/article/view/165/156

[5]. Goswami, MaloyJyoti. "AI-Based Anomaly Detection for Real-Time Cybersecurity." International Journal of

Research and Review Techniques 3.1 (2024): 45-53.

[6]. Bharath Kumar Nagaraj, Manikandan, et. al, ―Predictive Modeling of Environmental Impact on Non-

Communicable Diseases and Neurological Disorders through Different Machine Learning Approaches‖,

Biomedical Signal Processing and Control, 29, 2021.

[7]. Govindaiah Simuni ―Auto ML for Optimizing Enterprise AI Pipelines: Challenges and Opportunities‖,

International IT Journal of Research, Volume 2, Issue 4, October- December, 2024 [Online]. Available:

https://itjournal.org/index.php/itjournal/article/view/84/68

[8]. Amol Kulkarni, "Amazon Redshift: Performance Tuning and Optimization," International Journal of Computer

Trends and Technology, vol. 71, no. 2, pp. 40-44, 2023. Crossref, https://doi.org/10.14445/22312803/IJCTT-

V71I2P107

https://doi.org/10.1016/j.comnet.2019.106984
https://journalofengineering.org/index.php/ijef/article/view/21
https://doi.org/10.14445/22312803/IJCTT-V71I2P107
https://doi.org/10.14445/22312803/IJCTT-V71I2P107

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

139

[9]. Casale, G., Chesta, C., Deussen, P., Di Nitto, E., Gouvas, P., Koussouris, S., Stankovski, V., Symeonidis, A.,

Vlassiou, V., Zafeiropoulos, A., & Zhao, Z. (2016). Current and future challenges of software engineering for

services and applications. Procedia Computer Science, 97, 34–42. https://doi.org/10.1016/j.procs.2016.08.278

[10]. Di Francesco, P., Lago, P., & Malavolta, I. (2019). Architecting with microservices: A systematic mapping

study. Journal of Systems and Software, 150, 77–97. https://doi.org/10.1016/j.jss.2019.01.001

[11]. Holmlund, M., Van Vaerenbergh, Y., Ciuchita, R., Ravald, A., Sarantopoulos, P., Ordenes, F. V., & Zaki, M.

(2020). Customer experience management in the age of big data analytics: A strategic framework. Journal of

Business Research, 116, 356–365. https://doi.org/10.1016/j.jbusres.2020.01.022

[12]. Hüttermann, M. (2012). DevOps for Developers. In Apress eBooks. https://doi.org/10.1007/978-1-4302-4570-4

[13]. Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., &Tilkov, S. (2018). Microservices: the journey so far and

challenges ahead. IEEE Software, 35(3), 24–35. https://doi.org/10.1109/ms.2018.2141039

[14]. Kreuzberger, D., Kühl, N., & Hirschl, S. (2023). Machine Learning Operations (MLOPs): overview, definition,

and architecture. IEEE Access, 11, 31866–31879. https://doi.org/10.1109/access.2023.3262138

[15]. Laghrissi, A., & Taleb, T. (2018). A survey on the placement of virtual resources and virtual network functions.

IEEE Communications Surveys & Tutorials, 21(2), 1409–1434. https://doi.org/10.1109/comst.2018.2884835

[16]. Macarthy, R. W., & Bass, J. M. (2020). An Empirical Taxonomy of DevOps in Practice. DevOps Best Practices:

Automating Deployment for Faster Delivery, 221–228. https://doi.org/10.1109/seaa51224.2020.00046

[17]. Mendling, J., Pentland, B. T., & Recker, J. (2020). Building a complementary agenda for business process

management and digital innovation. European Journal of Information Systems, 29(3), 208–219.

https://doi.org/10.1080/0960085x.2020.1755207

[18]. Mishra, A., &Otaiwi, Z. (2020). DevOps and software quality: A systematic mapping. Computer Science

Review, 38, 100308. https://doi.org/10.1016/j.cosrev.2020.100308

[19]. Mohan, V., & Othmane, L. B. (2016). SecDevOps: Is It a Marketing Buzzword? - Mapping Research on

Security in DevOps. DevOps Best Practices: Automating Deployment for Faster Delivery.

https://doi.org/10.1109/ares.2016.92

[20]. Munappy, A. R., Mattos, D. I., Bosch, J., Olsson, H. H., &Dakkak, A. (2020). From Ad-Hoc Data Analytics to

DataOps. DevOps Best Practices: Automating Deployment for Faster Delivery, 165–174.

https://doi.org/10.1145/3379177.3388909

[21]. Opara-Martins, J., Sahandi, R., & Tian, F. (2016). Critical analysis of vendor lock-in and its impact on cloud

computing migration: a business perspective. Journal of Cloud Computing Advances Systems and Applications,

5(1). https://doi.org/10.1186/s13677-016-0054-z

[22]. Pahl, C., Jamshidi, P., & Zimmermann, O. (2018). Architectural principles for cloud software. ACM

Transactions on Internet Technology, 18(2), 1–23. https://doi.org/10.1145/3104028

[23]. Sebastian, I. M., Ross, J. W., Beath, C., Mocker, M., Moloney, K. G., &Fonstad, N. O. (2020). How big old

companies navigate digital transformation. In Routledge eBooks (pp. 133–150).

https://doi.org/10.4324/9780429286797-6

[24]. Sultan, S., Ahmad, I., & Dimitriou, T. (2019). Container security: issues, challenges, and the road ahead. IEEE

Access, 7, 52976–52996. https://doi.org/10.1109/access.2019.2911732

[25]. Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Architectural Patterns for Microservices: A Systematic Mapping

Study. DevOps Best Practices: Automating Deployment for Faster Delivery.

https://doi.org/10.5220/0006798302210232

[26]. Zhang, S., Fan, D., He, J., & Zhang, P. (2021). A New Approach for End to End Automation Testing Platform

with Cloud Computing for 5G Product. 2020 International Conference on Computer Engineering and

Application (ICCEA), 7, 322–326. https://doi.org/10.1109/iccea53728.2021.00070

[27]. DIGITAL TRANSFORMATION IN RUBBER PRODUCT MARKETING. (2024). International Journal for

Research Publication and Seminar, 15(4), 118-122. https://doi.org/10.36676/jrps.v15.i4.18

[28]. Ashish Babubhai Sakariya. (2024). Sustainable Marketing Approaches for the Rubber Industry. International

Journal of Research and Review Techniques, 1(1), 43–50. Retrieved from

https://ijrrt.com/index.php/ijrrt/article/view/218

[29]. Emerging Trends in Sales Automation and Software Development for Global Enterprises. (2024). International

IT Journal of Research, ISSN: 3007-6706, 2(4), 200-

214. https://itjournal.org/index.php/itjournal/article/view/86

[30]. Ashish Babubhai Sakariya, " Impact of Technological Innovation on Rubber Sales Strategies in India ,

International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN :

2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 5, pp.344-351, September-October-2019.

[31]. AI in Insurance: Enhancing Fraud Detection and Risk Assessment. (2024). International IT Journal of

Research, ISSN: 3007-6706, 2(4), 226-236. https://itjournal.org/index.php/itjournal/article/view/91

[32]. Cloud-Based Compliance Systems: Architecture and Security Challenges. (2025). International IT Journal of

Research, ISSN: 3007-6706, 3(1), 24-33. https://itjournal.org/index.php/itjournal/article/view/93

[33]. Chinmay MukeshbhaiGangani. (2024). Automated Data Integrity Checks for Financial Software

Systems. Journal of Sustainable Solutions, 1(4), 197–207. https://doi.org/10.36676/j.sust.sol.v1.i4.52

https://doi.org/10.36676/jrps.v15.i4.18
https://ijrrt.com/index.php/ijrrt/article/view/218
https://itjournal.org/index.php/itjournal/article/view/86
https://itjournal.org/index.php/itjournal/article/view/91
https://itjournal.org/index.php/itjournal/article/view/93
https://doi.org/10.36676/j.sust.sol.v1.i4.52

International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com

140

[34]. Chinmay MukeshbhaiGangani, " Applications of Java in Real-Time Data Processing for Healthcare ,

International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN :

2395-1990, Online ISSN : 2394-4099, Volume 6, Issue 5, pp.359-370, September-October-2019.

[35]. Chinmay MukeshbhaiGangani , "Data Privacy Challenges in Cloud Solutions for IT and Healthcare",

International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X,

Print ISSN : 2395-6011, Volume 7 Issue 4, pp. 460-469, July-August 2020.

Journal URL : https://ijsrst.com/IJSRST2293194 | BibTeX | RIS | CSV

[36]. Kandlakunta, Avinash Reddy and Simuni, Govindaiah, Edge Computing and its Integration in Cloud

Computing (January 03, 2024). Available at SSRN: https://ssrn.com/abstract=5053313 or

http://dx.doi.org/10.2139/ssrn.5053313

[37]. Goswami, MaloyJyoti. "Leveraging AI for Cost Efficiency and Optimized Cloud Resource Management."

[38]. International Journal of New Media Studies: International Peer Reviewed Scholarly Indexed Journal 7.1

(2020): 21-27.

[39]. Sravan Kumar Pala, ―Implementing Master Data Management on Healthcare Data Tools Like (Data Flux,

MDM Informatica and Python)‖, IJTD, vol. 10, no. 1, pp. 35–41, Jun. 2023. Available:

https://internationaljournals.org/index.php/ijtd/article/view/53

[40]. Pillai, Sanjaikanth E. VadakkethilSomanathan, et al. "Mental Health in the Tech Industry: Insights From

Surveys And NLP Analysis." Journal of Recent Trends in Computer Science and Engineering (JRTCSE) 10.2

(2022): 23-34.

[41]. Goswami, MaloyJyoti. "Challenges and Solutions in Integrating AI with Multi-Cloud Architectures."

International Journal of Enhanced Research in Management & Computer Applications ISSN: 2319-7471, Vol.

10 Issue 10, October, 2021.

[42]. Govindaiah Simuni and AtlaAmarnathreddy (2024). Hadoop in Enterprise Data Governance: Ensuring

Compliance and Data Integrity. International Journal of Data Science and Big Data Analytics, 4(2), 71-78. doi:

10.51483/IJDSBDA.4.2.2024.71-78.

[43]. Banerjee, Dipak Kumar, Ashok Kumar, and Kuldeep Sharma."Artificial Intelligence on Additive

Manufacturing." International IT Journal of Research, ISSN: 3007-6706 2.2 (2024): 186-189.

[44]. Govindaiah Simuni ―AI-Powered Data Governance Frameworks: Enabling Compliance in Multi-Cloud

Environments‖ International Journal of Business, Management and Visuals (IJBMV), ISSN: 3006-2705,

Volume 6, Issue 1, January-June, 2023, Available online

at:https://ijbmv.com/index.php/home/article/view/112/103

[45]. Cloud Compliance Systems: Trends and Future Directions. (2024). International IT Journal of Research, ISSN:

3007-6706, 2(4), 215-225. https://itjournal.org/index.php/itjournal/article/view/87

[46]. Machine Learning Approaches to Enhance Access Control Systems. (2025). International IT Journal of

Research, ISSN: 3007-6706, 3(1), 1-12. https://itjournal.org/index.php/itjournal/article/view/88

[47]. Laxmana Kumar Bhavandla. (2024). Using AI for Real-Time Cloud-Based System Monitoring. Journal of

Sustainable Solutions, 1(4), 187–196. https://doi.org/10.36676/j.sust.sol.v1.i4.51

[48]. AI-Based Automation for Employee Screening and Drug Testing. (2024). International IT Journal of Research,

ISSN: 3007-6706, 2(4), 185-199. https://itjournal.org/index.php/itjournal/article/view/85

[49]. Yogesh Gadhiya. (2025). Blockchain for Enhancing Compliance Data Integrity in Occupational

Healthcare. Scientific Journal of Metaverse and Blockchain Technologies, 2(2).

https://doi.org/10.36676/sjmbt.v2.i2.39

https://ijsrst.com/IJSRST2293194
https://ijsrst.com/BibTeX.php?param=IJSRST2293194
https://ijsrst.com/RIS.php?param=IJSRST2293194
https://ijsrst.com/CSV.php?param=IJSRST2293194
http://dx.doi.org/10.2139/ssrn.5053313
https://internationaljournals.org/index.php/ijtd/article/view/53
https://itjournal.org/index.php/itjournal/article/view/87
https://itjournal.org/index.php/itjournal/article/view/88
https://doi.org/10.36676/j.sust.sol.v1.i4.51
https://itjournal.org/index.php/itjournal/article/view/85
https://doi.org/10.36676/sjmbt.v2.i2.39

