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ABSTRACT 

 

In this paper, we present a new preconditioned Gauss-Seidel (GS) method for solving the linear system 𝐴𝑥 = 𝑏 and 

compared the proposed method with the standard Gauss-Seidel method. We produced some comparison theorems to 

show the efficiency of the proposed method. Numerical examples are also being studied to know the rate of convergence, 

memory requirements and time to converge. Finally, the numerical experiments show that the proposed method is better 

than the standard Gauss-Seidel method, the preconditioned GS methods with the preconditioners such as  𝐼 + 𝐶   6 ,  
 𝐼 + 𝑃1   8   and   𝐼 + 𝑃2   8 . 
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INTRODUCTION 

                 

The use of direct method for solving the linear system 𝐴𝑥 = 𝑏 ⋯⋯ (1) is often impractical from the computational 

point of view, when the coefficient matrix 𝐴 is large and sparse. For example solving a linear system with 20 equations and 

20 unknowns by Cramer’s rule(direct method) using the usual definition of determinant, would require more than a million 

of years even on a fast computer. Due to this when 𝐴 is large and sparse, iterative methods are very much essential for 

solving the linear system (1). Moreover, when the condition number of the coefficient matrix is large then the iterative 

methods converge very slowly. To minimize the condition number of the coefficient matrix, preconditioning techniques are 

being often used. In this procedure we shall multiply the linear system (1) by a suitable matrix say P (called the 

preconditioner) i.e. 𝑃𝐴𝑥 = 𝑃𝑏 and then solve the preconditioning system by an iterative method. In fact, the smaller 

condition number of the coefficient matrix of a linear system makes the faster rate of convergence of the iteration process. 

A preconditioner 𝑃 of a matrix 𝐴 is a matrix such that 𝑃−1𝐴 has a smaller condition number than 𝐴. It is sometimes 

common to call  𝑇 = 𝑃−1, the preconditioner rather than 𝑃, since 𝑃 itself is rarely explicitely available. Moreover, in 

order to conclude this paper we shall be looking for the spectral radii of the iteration matrices of the two methods namely 

classical GS and the proposed method because it is obvious from the iteration convergence theorem that for the 

convergence of any iterative method, the spectral radius of the iteration matrix has to be less than 1. At last, the smaller 

spectral radius of the iteration matrix, the faster is the rate of convergence of the iterative method. 

 

For our convenience, we consider the diagonal elements of 𝐴 are unity and splits 𝐴 as 𝐴 = 𝐼 − 𝐿 − 𝑈;  where  𝐼, 𝐿, 𝑈  

are the identity, strictly lower and strictly upper triangular matrices respectively. 

 

Preliminaries 

Definition 2.1. The splitting 𝐴 = 𝑀 − 𝑁 is termed as GS splitting if 𝑀 = 𝐷 − 𝐿, 𝑁 = 𝑈; where 𝐷 is a diagonal 

matrix and 𝐿, 𝑈  are strictly lower and strictly upper triangular matrices of 𝐴. If 𝑀−1 = (𝐷 − 𝐿)−1 ≥ 0 and 𝑁 =

𝑈 ≥ 0, then it is said that 𝐴 is the GS convergent splitting and this splitting is called convergent when  𝜌 𝑀−1𝑁 < 1. 

Definition 2.2. The splitting 𝐴 = 𝑀 − 𝑁 is an 𝑀-splitting if 𝑀 is nonsingular 𝑀-matrix and 𝑁 is a nonnegative matrix. 

 

Definition 2.3. The GS iteration matrix for the system 𝐴𝑥 = 𝑏  𝑖. 𝑒.  𝐼 − 𝐿 − 𝑈 𝑥 = 𝑏  is 𝑇 = (𝐼 − 𝐿)−1𝑈 and the 

GS method is convergent when  𝜌 𝑇 < 1. 
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Definition 2.4. A strictly upper triangular matrix is a square matrix whose all the elements in the principal diagonal and 

below the principal diagonal are zeroes. 

 

Definition 2.5. A strictly lower triangular matrix is a square matrix in which all the elements in the leading diagonal and 

above the leading diagonal are zeroes. 

 

Definition 2.6. A     𝑍-matrix    𝐴 = (𝑎𝑖𝑗 )𝑛𝑥𝑛   is a square  matrix  such that  𝑎𝑖𝑗 ≤ 0  𝑓𝑜𝑟  𝑖 ≠ 𝑗. 
 

Definition 2.7. A     𝑍-matrix  𝐴 is called an  𝑀-matrix if  

(a) all real eigenvalues  of 𝐴 are positive. 

(b) the real part of any eigenvalue of 𝐴 is positive. 

(c) the diagonal entries of 𝐴 are positive. 

(d) 𝐴 can be expressed in the form 𝐴 = 𝑘𝐼 − 𝐵, where 𝐵 ≥ 0 𝑎𝑛𝑑 𝜌 𝐵 ≤ 𝑘. 
 

Definition 2.8. A square matrix 𝐴 is said to be irreducible if the directed graph 𝐷(𝐴) of 𝐴 is strongly connected, 

otherwise 𝐴 is reducible. 

 

Lemma 2.9.  [10] Let 𝐴 be a nonnegative 𝑛𝑥𝑛 nonzero matrix, then  

 

(1) 𝜌 𝐴 , the spectral radius of 𝐴, is an eigenvalue; 

(2) 𝐴 has a nonnegative eigenvector corresponding to 𝜌 𝐴 ; 
(3) 𝜌 𝐴  is a simple eigenvalue of 𝐴; 
(4) 𝜌 𝐴  increases when any entry of 𝐴 increases. 

 

Proposed method 

We consider the preconditioner as  𝑃 = 𝐼 + 𝑆3  in order to accelerate the convergence rate of the GS method for solving 

the linear system  𝐴𝑥 = 𝑏; where 

                                    𝑆3 =    0   0             ⋯              0       −𝑎1𝑛  0       ⋮        0        0 ⋮  0        ⋯  ⋱  ⋯          0 ⋮

 0        −𝑎2𝑛  ⋮  −𝑎𝑛−1,𝑛      0          0              ⋯        0      0   

Now,                                                       𝐴𝑥 = 𝑏 

Or,                                                        𝑃𝐴𝑥 = 𝑃𝑏 

Or,                          𝐼 + 𝑆3  𝐼 − 𝐿 − 𝑈 𝑥 =  𝐼 + 𝑆3 𝑏 

Or,       𝐼 − 𝐿 − 𝑈 + 𝑆3 − 𝑆3𝐿 − 𝑆3𝑈 𝑥 =  𝐼 + 𝑆3 𝑏 

Or,     𝐼 − 𝐿 − 𝑈 + 𝑆3 − 𝐷1 − 𝐿1 − 𝑈1 − 𝑆3𝑈 𝑥 =  𝐼 + 𝑆3 𝑏;   𝑤𝑒𝑟𝑒   𝑆3𝐿 = 𝐷1 + 𝐿1 + 𝑈1       

Or,     𝐼 − 𝐿 − 𝐷1 − 𝐿1 𝑥 =   𝑈 − 𝑆3 + 𝑆3𝑈 + 𝑈1 𝑥 +  𝐼 + 𝑆3 𝑏                       

Or,    𝑥 =  𝐼 − 𝐿 − 𝐷1 − 𝐿1 
−1(𝑈 − 𝑆3 + 𝑆3𝑈 + 𝑈1)𝑥 +  𝐼 − 𝐿 − 𝐷1 − 𝐿1 

−1 𝐼 + 𝑆3 𝑏 

 

 

 

Then the proposed method can be expressed as, 

 

 

                                                                  𝑥(𝑘+1) = 𝑇3𝑥
(𝑘) + 𝑐3 ;   

 

Where, the preconditioned iterative matrix(𝑇3) = 𝑀3
−1𝑁3;  𝑀3 = 𝐼 − 𝐿 − 𝐷1 − 𝐿1 , 

 

                                                                            𝑁3 =  𝑈 − 𝑆3 + 𝑆3𝑈 + 𝑈1; 
              

 the preconditioned iterative vector(𝑐3) =   𝐼 − 𝐿 − 𝐷1 − 𝐿1 
−1 𝐼 + 𝑆3 𝑏; 
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and       the preconditioned system matrix(𝐴3)  =  𝐼 + 𝑆3 𝐴 

                                                                                     =  𝐼 − 𝐿 − 𝐷1 − 𝐿1 − ( 𝑈 − 𝑆3 + 𝑆3𝑈 + 𝑈1) 

                                                                                     = 𝑀3 − 𝑁3. 
 

The preconditioned system matrix can also be put as, 𝐴3 =  𝐼 + 𝑆3 𝐴 = (𝑎𝑖𝑗
3 ) 

                                                                                                = {𝑎𝑖𝑗 − 𝑎𝑖𝑛𝑎𝑛𝑗   ;  1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤

𝑛 𝑎𝑛𝑗  ;                 1 ≤ 𝑗 ≤ 𝑛                
 

Again, it can be easily notice that if, 

                                                    𝑎𝑖𝑛𝑎𝑛𝑖 ≠ 1 ;  1 ≤ 𝑖 ≤ 𝑛 − 1, then  𝑀3
−1

  exists and i.e  if  𝑀3 is nonsingular, then 

the preconditioned GS iterative matrix  (𝑇3) = 𝑀3
−1𝑁3  is defined. Throughout of this paper, we will assume that  

𝑎𝑖𝑛 ≠ 0, 𝑖 = 1,2, ⋯⋯ , 𝑛 − 1. 
 

Comparison Theorem 

Theorem 4.1. Let 𝐴 be an 𝑛𝑥𝑛 irreducibly diagonally dominant 𝑍-matrix and 𝐴 = 𝑀 − 𝑁 (GS splitting) &  𝐴3 =
𝑀3 − 𝑁3 (preconditioned GS splitting).Then the following inequality holds: 

 

                                                       𝑀−1 ≥ 0,   𝑁 ≥ 0   𝑎𝑛𝑑   𝑀3
−1  ≥ 0,   𝑁3 ≥ 0.  

Also,            𝐴 = 𝑀 − 𝑁  and  𝐴3 = 𝑀3 − 𝑁3  are the Gauss-Seidel convergent splittings.  

Proof.   We have,                     𝐼 ≥ 0,    𝐿 ≥ 0,    𝑈 ≥ 0,   𝐷1 ≥ 0,   𝐿1 ≥ 0,   𝑈1 ≥ 0,    𝑆3 ≥ 0.    
                                 Then,      𝑀−1 = (𝐼 − 𝐿)−1   

                                                          = 𝐼 + 𝐿 + 𝐿2 + 𝐿3 + ⋯⋯⋯⋯ ≥  0;    𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑  𝜌 𝐿 < 1. 

                                  and             𝑁 = 𝑈 ≥ 0. 

Again,    𝑀3
−1 =  𝐼 − 𝐿 − 𝐷1 − 𝐿1 

−1 

                         = [𝐼 −  𝐿 + 𝐷1 + 𝐿1 ]−1   

                         = 𝐼 +  𝐿 + 𝐷1 + 𝐿1 +  𝐿 + 𝐷1 + 𝐿1 
2 +  𝐿 + 𝐷1 + 𝐿1 

3 + ⋯⋯⋯ ≥ 0; 
                                                                                               𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑    𝜌 𝐿 + 𝐷1 + 𝐿1 < 1 

 and           𝑁3 =  𝑈 − 𝑆3 + 𝑆3𝑈 + 𝑈1 ≥ 0;     𝑠𝑖𝑛𝑐𝑒     𝑈 − 𝑆3 ≥ 0. 

i.e.                   𝑀−1 ≥ 0, 𝑁 ≥ 0 and 𝑀3
−1 ≥ 0, 𝑁3 ≥ 0 and so by definition 2.1., 𝐴 = 𝑀 − 𝑁 and 𝐴3 = 𝑀3 −

𝑁3 are the Gauss-Seidel convergent splittings. Hence from Theorem 3.29 in [9], we have 𝜌 𝑀−1𝑁 < 1 and  

𝜌 𝑀3
−1𝑁3 < 1. 

Theorem 4.2. Let 𝐴 be an 𝑛𝑥𝑛 irreducibly diagonally dominant  𝑍-matrix and 𝐴 = 𝑀 − 𝑁 is the Gauss-Seidel 

convergent splitting. Then the Gauss-Seidel iteration matrix   𝑇 = 𝑀−1𝑁 ≥ 0. 
 

Proof.           By  Theorem 4.1. that, 

                                                            𝑀−1 ≥ 0,     𝑁 ≥ 0 

                      Therefore,                        𝑇 = 𝑀−1𝑁 ≥ 𝑀−1 ≥ 0. 
 

Theorem 4.3. Let 𝐴 be an 𝑛𝑥𝑛 irreducibly diagonally dominant 𝑍-matrix and 𝐴 = 𝑀 − 𝑁, 𝐴3 = 𝑀3 − 𝑁3  are the 

Gauss-Seidel convergent splittings. Then 

 

                    (a)    𝜌 𝑇3 < 𝜌 𝑇 ,     𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑   𝜌 𝑇 < 1 

                    (b)    𝜌 𝑇3 = 𝜌 𝑇 ,     𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑   𝜌 𝑇 = 1 

                    (c)    𝜌 𝑇3 > 𝜌 𝑇 ,     𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑   𝜌 𝑇 > 1. 
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Proof. By Theorem 4.2., we have  𝑇 ≥ 0 i.e. 𝑇 is a nonnegative square matrix and therefore  𝑇 has a positive eigenvector 

say 𝑥 and 𝜌 𝑇 > 0(Definition 2.9.). Let  𝑥 = (𝑥1, 𝑥2 , 𝑥3, ⋯⋯ , 𝑥𝑛)𝑇  be the positive eigenvector corresponding to 

the eigenvalue   𝜌 𝑇  of  𝑇. Then 

 

                                             𝑇𝑥 = 𝜌 𝑇 𝑥 

Or,                      𝐼 − 𝐿 −1𝑈𝑥 = 𝜌 𝑇 𝑥;     𝑠𝑖𝑛𝑐𝑒  𝐺𝑆 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑇 =  𝐼 − 𝐿 −1𝑈 

Or,                                      𝑈𝑥 = 𝜌 𝑇  𝐼 − 𝐿 𝑥                                                       ⋯⋯⋯⋯⋯⋯      (𝑎) 

Or,        𝑈 − 𝑆3 + 𝑆3𝑈 + 𝑈1 +  𝑆3 − 𝑆3𝑈 − 𝑈1  𝑥 = 𝜌 𝑇   𝐼 − 𝐿 − 𝐷1 − 𝐿1 +  𝐷1 + 𝐿1  𝑥 

                                                                                                                                     ⋯⋯⋯⋯⋯⋯      (𝑏) 

Let                                        𝐵 =  𝐼 − 𝐿 − 𝐷1 − 𝐿1 
−1 

Now,          𝑇3𝑥 − 𝑇𝑥 =  𝐵  𝑈 − 𝑆3 + 𝑆3𝑈 + 𝑈1 − 𝜌 𝑇  𝐼 − 𝐿 − 𝐷1 − 𝐿1  𝑥 

= 𝐵 𝜌 𝑇   𝐼 − 𝐿 − 𝐷1 − 𝐿1 +  𝐷1 + 𝐿1  −  𝑆3 − 𝑆3𝑈 − 𝑈1 − 𝜌 𝑇  𝐼 − 𝐿 − 𝐷1 − 𝐿1 𝑥 ,  
                                                                                                                                                   [  Using   (b)  ] 

                                      =  𝐵 𝜌 𝑇  𝐷1 + 𝐿1 −  𝑆3 − 𝑆3𝑈 − 𝑈1  𝑥 

                                      = 𝐵[𝜌 𝑇 (𝑆3𝐿 − 𝑈1) −  𝑆3 − 𝑆3𝑈 − 𝑈1 ]𝑥 

                                      = 𝐵[𝑆3 𝜌 𝑇 𝐿 − 𝐼 + 𝑈 + (1 − 𝜌 𝑇 )𝑈1]𝑥  

                                      =  𝐵[𝑆3 𝜌 𝑇 𝐿 − 𝐼 + 𝜌 𝑇 (𝐼 − 𝐿 ) + (1 − 𝜌 𝑇 )𝑈1]𝑥 ;     [  𝑈𝑠𝑖𝑛𝑔    𝑎   ]  

                                      = 𝐵  1 − 𝜌 𝑇   𝑈1 − 𝑆3  𝑥 

                                      =  1 − 𝜌 𝑇  𝐵 𝑈1 − 𝑆3 𝑥 

                                      =  1 − 𝜌 𝑇  𝐵 𝑆3𝐿 − 𝐷1 − 𝐿1 − 𝑆3 𝑥          [𝑠𝑖𝑛𝑐𝑒  𝑆3𝐿 = 𝐷1 + 𝐿1 + 𝑈1]  

                                      =  𝜌 𝑇 − 1 𝐵 𝑆3 𝐼 − 𝐿 + 𝐷1 + 𝐿1 𝑥 

                                      =  𝜌 𝑇 − 1 𝐵  
1

𝜌 𝑇 
𝑆3𝑈 + 𝐷1 + 𝐿1 𝑥                                   [  𝑈𝑠𝑖𝑛𝑔   𝑎   ] 

                                      =
 𝜌 𝑇 −1 

𝜌 𝑇 
𝐵 𝑆3𝑈 + 𝜌 𝑇  𝐷1 + 𝐿1  𝑥 

Clearly,          𝐵 𝑆3𝑈 + 𝜌 𝑇  𝐷1 + 𝐿1  𝑥 ≥ 0 ;      𝑠𝑖𝑛𝑐𝑒  𝐵 ≥ 0, 𝑆3 ≥ 0, 𝑈 ≥ 0, 𝐿1 ≥ 0,  𝐷1 ≥ 0 

                                                                                                                                  𝑎𝑛𝑑  𝜌 𝑇 > 0, 𝑥 > 0. 
Again,                        𝐵 𝑆3𝑈 + 𝜌 𝑇  𝐷1 + 𝐿1  𝑥 ≠ 0   and so it  is  a nonzero, nonnegative vector. 

Now, if  𝜌 𝑇 < 1, then obviously  𝑇3𝑥 − 𝑇𝑥 ≤ 0. Since 𝑇3 and 𝑇(𝑇3 ≠ 𝑇) both are nonnegative 

square matrices and so,                                         𝜌 𝑇3 < 𝜌 𝑇                                     [Definition 2.9.] 

Similarly, if                 𝜌 𝑇 = 1,  then  clearly    𝜌 𝑇3 = 𝜌 𝑇  

and                              𝜌 𝑇 > 1       implies         𝜌 𝑇3 > 𝜌 𝑇 . 
 

Hence the proposed method converges faster than the standard GS method when 𝜌 𝑇 < 1 and the new method diverges 

even faster than the standard GS method when 𝜌 𝑇 > 1. 
 

Furthermore, it also has been noted that when the matrix  𝐴 is large and sparse, then if 𝜌 𝑇 < 1 and approaches to 1, the 

improvement is very slight. But if 𝜌 𝑇 < 1 and approaches to 0.5 then the proposed method is much preferable over the 

standard GS method. 

 

Comparison of numerical results 

To know the efficiency of the new method we have considered the following three matrices and compared the numerical 

results for the different GS methods as mentioned in this paper: 

(1)                                             𝐴1 =  1 − 0.2 − 0.3  − 0.2 − 0.2 − 0.1  1 − 0.2  − 0.3 1   − 0.1 −
0.3  − 0.2 − 0.3 − 0.3  1   

 

(2)                                     𝐴2 =  1 − 0.2 − 0.3 − 0.2  − 0.2 − 0.1 − 0.2 − 0.2  1 − 0.3 − 0.1  −
0.2 1 − 0.3  − 0.3 − 0.1 1   − 0.1 − 0.2 − 0.3  − 0.3 − 0.2 − 0.3 − 0.1  1   

 



International Journal of Unique and New Updates (IJUNU), ISSN: 3079-4722 

Volume 7, Issue 1, January- June, 2025, Available online at: www.ijunu.com 

198 

(3)                              𝐴3 =  1 − 0.1 − 0.2  − 0.2 1 − 0.2  − 0.1 − 0.2 1   − 0.2 − 0.2 − 0.1  − 0.1 −
0.1 − 0.2  − 0.1 − 0.1 − 0.1   − 0.2 − 0.2 − 0.3  − 0.1 − 0.2 − 0.1  − 0.3 − 0.1 − 0.2   1 −
0.2 − 0.1  − 0.1 1 − 0.2  − 0.1 − 0.1 1     

 

The spectral radii of the iteration matrices for the different methods as mentioned have been computed using  MATLAB 

R12  and are given in the following table:  

 

          𝐴𝑖            𝜌(𝑇)         𝜌(𝑇3)         𝜌(𝑇𝐶)        𝜌(𝑇𝑃1
)        𝜌(𝑇𝑃2

) 

          𝐴1       0.4671       0.3144       0.4671       0.4208       0.4596 

          𝐴2       0.7081       0.6212       0.7081       0.6702       0.7012 

          𝐴3       0.6065       0.5593       0.6065       0.5829       0.6023 

 

Where the symbols  𝜌(𝑇),  𝜌 𝑇3 ,   𝜌 𝑇𝐶 ,   𝜌 𝑇𝑃1
  and  𝜌(𝑇𝑃2

)   mean the spectral radii of the iteration matrices of 

the standard GS method, the proposed method, the preconditioned GS method with the preconditioner (𝐼 + 𝐶)  6 , the 

preconditioned GS methods when applying the preconditioners   𝐼 + 𝑃1    8    𝑎𝑛𝑑  ( 𝐼 + 𝑃2) [8]  respectively. 

 

CONCLUSIONS 

 

In this paper we have presented a new preconditioned GS method for the solution of system of linear equations. Some 

comparison theorems and three numerical examples are added to show the efficiency of the new method. In each case, we 

have seen that the spectral radius of the proposed method is less than the original GS method, the preconditioned GS 

method with the preconditioner (𝐼 + 𝐶)  6  and the preconditioned GS methods with the preconditioners  (𝐼 + 𝑃1,   𝐼 +
𝑃2) [8]. Hence by Theorem 4.3, it is obvious that the rate of convergence of the proposed method is faster and its error in 

any level is less than the GS method. 
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